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CONSTRAINTS* 

The matrix parameter estimation problem is examined for linear discrete systemsunder 
the assumption that the available data is limited to the measurement of a function 
of the system's coordinates /l-7/. A description of the data set of the weight 
functions compatible with the measurement results, as well as a matrix equation for 
its center, are obtained. It is shown that the resolving operator fortheestimation 
problem given admits of a factorization whose properties permit the reductionofthe 
solving of the matrix equations obtained to the solving of vector equations. In the 
posing of the problem and in the solution methods the paper abuts the investigations 
in /1,2/. 

1. Statement of the problem and basic definitions, A linear controlled system 
with the discrete time 

5 (1) = K (1) z (0) + Bu (0) 
k--l (1.1) 

x (k + 1) = K (k + 1) z (0) -1 ,zo K (k - i) Rrr (i) ! Bu (k). 

x,=1, . . ..p-1 

is given. Here K (i) (i = 1, . ., p) are hitherto unknown weight (n ‘-: n)-matrices, 5 (0) is a 
known n-dimensional vector of the initial position of system (l.l), u(i) (i =O, . . . . p -1) 
are known r-vector-valued controls.ThematrixBof size (nxr) isknown. Additional information 
on system (1.1) can be obtained during the process at the expense of additional measurements 
relative to the equation 

y (k + 1) = G.z (k + 1) + E (k + I), li --- 0, 1, . . I~ - 1 (1.2) 

where E (i) (i :: 1, . . ., p) are m-vector-valued noise in the measuring device,G isknown (m x n)- 
matrix. It is assumedthatthe a priori unknownparameters of system (l.l), (1.2) are subject 
to the consistent quadratic constraints 

<!I {(K (i) - Ko (i), N, (K (i) -K,(i))> -:- (E(i)> 5 (i))) < p2 (1.3) 

Here N* is a linear symmetric positive operator on the space of (n X n)-matrices (inparticu- 
lar, it can be operator of left or right multiplication by a symmetric positive (n X a)-matrix), 
K, (i) (i = 1, . . -, p) are known (rz x n)-matrices, p is a prescribed number. The symbol (.,e) 
henceforth denotes the scalar product on matrix spaces, defined (4, B) z--tr(AB*) /8-14/, 
while (.,a) denotes the scalar product on vector spaces. We introduce the following defini- 
tions and notation. 

Definition 1.1. The data set K (p) = K (p 1 y (I),...., y (p)) of weight functionsofsystem 
(1.1)-(1.3) is the family of all those and only those sequences {K’(l), ., K (p)) of matrices 
K (i), for which m-vectors E (I), . ., E (p) exist such that constraints (1.2)- (1.3) are ful- 

filled. 
Everywhere below the measurements y(l), . . . . y(p) are fixed, p > 1 is a fixed number. Let 

X be a finite-dimensional Euclidean space, A be a convex compactum lying in X, the func- 
tion 'p (5) = max (11 x -2 I/ 12 E A). 

Definition 1.2. aEX 
min {cp (5) 1 z F A}. 

is called the center of the convex compactum A if 'P (a) = 

We see that the convex compactum A always has a center a~ A and a is a center of the 
ellipsoid (z -a, M(z --a))< , Gif M is a linear positive operator on X. 
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Problem. Determine the data set I< (p) for system (l.l)- 
state J (U), an input {a (O), . ., u (p - I)), and measurement results 
conditions determining the center of K(p). 

(1.3) for a specified initial 
{y (I), . . ., ?J (p)}. Find the 

It is shown below that in the problem at hand the data set i s an ellipsoid in the cor- 
responding space of matrices. It is convenient to introduce the following notation (the 
asterisk denotes transposition): 

Here ;I/,, is the Hilbert space of (a nf-matrices with the scalar product as defined above. 
The scalar product on a product of Hilbert spaces is defined in the usual manner, for example, 

L 1 I 

The resulting Hilbert space is denoted by I!. 

2. Construction of the data set, Before the construction of the datasetwe present 
the following definitions. Let SE R”, YE Rk. 

Definition 2.1. The linear operator x@ y from R” into R' prescribed by the formula 

(x 0 Y) z = (5, 2) Y, 2 E: R" (2.1) 

is called the tensor product of vectors x and Y. 
The operator ~(5 Y can be written in matrix form as Yr*. Further, let A be a linear 

operator from I?" into ET", n be a linear operator from RL into R', Rn& Rk and R"' eO &" 
be the tensor products of the corresponding Hilbert spaces /e-14/. 

Definition 2.2. The linear operator A &B from RR @ Nk into R"'@ R', prescribed 
an operators of form x @) Y, SE R'", YE Rk by the formula 

(A 'x) B)(x @ y) Ax >, By (2.2) 

and continued by linearity onto the whole space R'"&H", is called the tensor product of the 
linear operators A and B. 

We remark that the tensor product of vectors from Definition 2.1 is not the tensor prod- 
uct of the corresponding one-column matrices from Definition 2.2. The space R” @ Rk and the 
space of linear operators from R'" into Rk, as well as the space M,@ &I% and the space of 
linear operators from h4, into M,,, are isomorphic. Linear operators on spaces R" and 
admit of the representation ZXi @G Ilt and XAi ,aBi t respectively. The matrix notation 0; 
operator A ‘. B where A il ill I' and 13 is a linear operator from ,lf= into Mn, has the form 

a,,B . . . u,~,B 

_-I ,.B = : 

I j 

: (2.3) 
aPIB . . cr,,,B 

and, in particular, we can examine the operator A @,I~ on space M. The corresponding map- 

ping from RI’@ M, onto 11 is constructed by the rule 

5 @ x -+ {x,X, . . .( J>’ X), I E Is”, x E nr, 

with a subsequent continuation by linearity onto the whole space fl",% $2 I L 1L. It remains to ob- 
serve that the following relations are valid: 
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Here X, Y are vectors, A, B, K are matrices such that the corresponding expressions in (2.4) 

are meaningful. 
We pass on to the construction of the data set. From (2.1)- (2.4) we can obtain that the 

linear mapping specified by conditions (l.l), (1.2) is 

TK-kg=z; z=y--16,. igGGU)u (2.51 

Here T is a linear operator onto space H, si is the operator of right shift onto H, 0, is 
the null element of space M,,. In this case constraint (1.3) can be written as follows: 

(K - Ko, N(K - K,)) -!- (g, Q< p2, N = E, @j M, 

where N is a linear operator onto space H. By calculations typical for linear-quadratic 
problems we can establish the validity of the following statement. 

Theorem 2.1. The data set K(p) is an ellipsoid in space H, defined by the equality 

K(p)={K E If/(K - K,,;Il(K -K,)) <:; p2-+ 

Here M is a block (p >C p)-matrix with elements 
p-1-i 

Aii=n’* !‘,, I‘ (0) 5* (0) : ,z 1111 (I,:) U* (I<) /I* &j G*G, i = 1, . . . , p 

p-&-i 
Aij = (Bit (j - i - 1) :r* (C) -;- 2 h’u (,+)rP (IL. - j - i) /I*) @ G*G, 

*xi--i 
i.<f=l, .._. p 

Aij -1 Aji, j ( i == 1, . . .,p 

The center K, of the data set K(p) is the solution of the matrix equation 

MK == K (y) 

whose right-hand side is defined by the relation 

(2.7) 

K (y) = NKo !. {G*z (1) z* (0), . . . . G*z (p) .c* (o))* 

{G* (/iv z (k) I(* (Ic - 2)) /I*, G* (& z (h) I<* (/c - 3)) I,‘*, . a . , G*z (p) II* (0) I{*, Oni* 
_ 

where z (I), . . ., z(p) are the 
mined by the formula 

coordinates of the block p-vector z . The number x1 is deter- 

x*=(%, z) (K", NK,,> -(K*, K(!/)) (2.81 

from the signal by virtue of the second relation in (2.5). 
for the center K*, as well as the determination of number XD' 
a simpler problem since the operator 11-l admits of a convenient 

where vector z is constructed 
The solution of Eq.(2.7) 

from (2.8), can be reduced to 
factorization which we now proceed to do. 

3. Factorization of operator W1 defining the center of data set Kfpf. The 
following assertion can be verified directly. 

Lemma 3.1. Let X and Y be finite-dimensional vector spaces, E.x and EY be identity 
operators on X and Y, respectively, T, be a linear operator from X into Y. Then the 
equality 

is valid. 

tT,*T, + Exf-* =Ex - TP(TIT,* + Ey)-‘T, (3.1) 

If in Lemma 3.1 we set 

x=11, Y = fiR”, T, = TN-‘/’ 
is, 

then the relation 
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K,=K, N-'T*(TN-'T* Ey)-l(~-TK~) 

follows from (2.7). Using definition (2.61, we obtain 

(3.2) 

Henceforth, for simplicity we reckon that operator N* has the form 'V, -N, & N,,where N,, N, 

are symmetric positive-definite matrices from space AI,. It can be verified that 

I’,,,,N-‘T:‘: r(o) = E, /, (z* (0) 11 ;‘.r (0) id lY,‘) (3.3) 

Carrying out analogous computations for summands of the form 

and taking into account (3.2), we can verify the validity of the next statement. 

Theorem 3.1. If operator N, ~mm N, (n;l N2, where N,, N, are symmetric positive-definite 

matrices, then the center I<, :- {K,(l), ..,,K,(p)}* of data set K (p) is determined from the 

condition 

K*(I)=K,(l) :\i;‘G* (xo ‘.c Z,l t j, (~~-2 c\/.J Z&II*} ( 

. . . . . . . . . . . . . . . . 

K, (P - 1) Ko (p - 1) + N,-’ G* (50 ‘$3 Z,,_I -t (u,, @ Z,,) B*) 

K, (P) Ko (p) i- N,-’ G* {x0 8 I,,,} 

3.4) 

where 1, {L,,, . ., Z,,) is the solution of the system 

A (E,, 3 GN,-'G*)l, : z* (3.5) 

The elements a,, of the symmetric positive-definite matrix A cs M, have the form 

i-2 

%I (z (‘3, N,-‘s (o)), aii = (x CO), h’i’~ (0)) i- ,z, (0 (k), 13*N;‘lIu (k)), i = 2, , p 

ali (X (O), N,-‘Bu (i - 2)), a,, - ali, i -- 2, . ., p 

i--2 

f7i, = (.r (O), h;‘/lu (j - i _ 1)) ~j_ T 
A (u (L,), /I*h ;‘Bu (fi -1 j -. i)), 

k--o 
(Iji = (li), 2<i.<jc;p 

The block p-vector Z* has the form 

x*=z~(E,sG)(h.“(1).~(0),h:,(2)3.(0) i r;,,(~)~u(o), . . ..~-~.(~)r(o) @c(n, i)/ju(~;f 

To prove Theorem 3.1 it remains to note that 

z--~= TKn, T*l,= (G*l,ls*(0) 1 5, G*Z 
k=2 

*p+*(/i- 2)/l*, . . . . G*Z,,_+z*(O) 1~ G*l,pu*(0)!l*, G*&*(O); 

Theorem 3.1 can be looked upon as an assertion on the factorization of operator %I-' in the 

form RQ-‘, where R(1,) is a computation operator (i.e., not requiring the solving of any eq- 

uation if we take the matrices N,-I, N-1 as being defined beforehand) specified by formulas 

(3.4), while the operator Q ~~ A (E,,,sJ GN,-lG,*) specified Eq.(3.5) on the succession space 

Thereby Theorem 3.1 enables us to avoid solving matrix equations even though the original ex- 

tremal problem was prescribed a priori on the matrix space 14. In addition, the number 

x2 defined in Theorem 2.1 by formula (2.8) can be computed only with respect to 1,: - the 

solution of Eq.(3.5)- i.e., and here we need not go from the space 
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to the matrix space H. An example of such a computation of number x2 is considered below 
for a one-step model of the present problem. 

To compare the equationsfor the center in Theorems 2.1 and 3.1 we turn to a one-step id- 
entification model 

5 (1) - A:,, (O)$ &L(O) (3.6) 

under constraints (3.7) and measurable signal (3.8) 

0 -A, N (A -.4"): + (5, E) c-1 p2 (3.7) 

Y -G.rU)+g (3.81 

We set K(1) -A, z ==y -G/h(O), p 1 and we make use of the results in Sects.2 and 3. For 
simplicity we assume as well that !% is the operator of left multiplication be a symmetric 
positive-definite matrix NEM,. In this case Theorem 2.1leadsto the following statement. 

Corollary 3.1. When p =1 the data ellipsoid K for system [3.6)-(3.8) is determin- 
ed by the conditions 

K = {A EMU \ (A -A,, M (A -A& < pa -9) (3.91 

itI = E,, &j N + x (0) s*(O) @ G*G (3.10) 

A, is the solution of the matrix equation 

NA + G*GAs (0) x* (0) = NAo + G’zt* (O), z = y - GBu (0) (3.11) 

xa = fz, z) + (A,, NAo) --<A,, NAa + G*z%(Of> (3.121 

Using arguments similar to those in c/13/, Chapter 81, we can write the solution of Eq. 
(3.10) as follows. 

Corollary 3.2. If matrix G is of full rank and the commutator /12/ [G*G, A-'] -0,,, 
then the solution of Eq.(3.10)- the center of elliposid K -has the form 

_4,=(G*G)-1 ~exp(-~G*G)-l~~)(~~~ '-G*& -G~~(O)]~*~O)} x es~'(-.~~(O).r* (0)~)~~~ (3.13) 
Ii 

However, if the center A, of elliposid K is found by Theorem 3.1, then the resultant 
factorization leads to the following statement. 

Corollary 3.3. When p .: 1 the center of 
determined from the formula 

A; :-. A,, -t_ N-‘G’ 

ellipsoid K for system (3.6)-(3.8) can be 

(r (0) @ I,) (3.14) 

where I, is the solution of the equation 

In this case 

1 -t- jl r (0) /I2 GN-‘G*l y - G {A,, x (0) + Bu (O)} (3.15) 

x2 : fi,, z -G&r (8)) -= fj 1, I\ * + /I z (0) /I2 (I,, GN-YPt*) (3.16) 

Representation (3.16) is obtained from (3.121, (3.14), (3.15) by direct verification. An 
analogous representation holds for the multistep model (l.l)- (1.3). 

The operator T from (2.6) admits of a simpler representation, but for solving the con- 
tinuous analog of the identification problem given by a limit transition, as well as for com- 
paring the results in the discrete- and continuous- time representations, theexpansion (2.6) 
of the present paper is more convenient. The solution of one continuous-time identification 
problem can be found in /7/. 

The author thanks A.B. Kurzhanskii for attention to the work and for discussions. 
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